Pre-processing of sea turtle biologging observations using a clustering algorithm SynObs Workshop

Aurélien PRAT

LACy (Météo France) & Inria

Nov 2022

STORM-IO Overview

STORM-IO

- Sea Turtles for Ocean Research and Monitoring
- Contribution of biologging technology using sea turtles equipped with ARGOS transmitters

Collaboration based on la Réunion Island

- LACy (Météo France) : Better understanding and modelling of the tropical cyclones on the SWIO. Part research, part operational.
- Kelonia : Sea turtle care center based in la Réunion. Animals caught in fisher nets or hurt by boat are here hosted, healed then released in the ocean → 25 turtles/year

2/18

STORM-IO Context

South Western Indian Ocean

- Strong cyclonic activity from January to May
- Operational forecasting system (AROME-Réunion), 3D-Var DA system
- Very poorly instrumented, need of in situ observations

Sea turtles as oceanographic auxiliaries

- Autonomous sampling platforms
- Travel thousands of km in several months within the ocean mixed layers
- Might be trapped inside cyclonic structures

Sea turtle ecology

- Navigation corrected using surface currents
- Diving patterns

Physical Oceanography & Meteorology

- Sample the ocean mixed layers (even deeper layers)
- Verify the satellite-derived ocean surface products
- Analyse the AROME-Réunion forecasting performances
- Improve climate forecast during cyclonic emergence focused on the SWIO

STORM-IO Material

Sea turtles profiles

- **93 sea turtles** equipped : 38 juveniles, 54 nesting females, 1 male
- From Jan 2019 to Apr 2022
- 7 initial locations : Moheli, Aldabra, Seychelles, Réunion Island, Europa, Tromelin, SA
- North global migration for juveniles, 500km/month on average

Tags description

	ERLEN IS JAD	ARGOS Loc.	Temperature sensor (0.05°C res)	Depth sensor (0.5m res)	Internal memory	Perpetual acquisition of temp. series data (5min rate)
Lotek	Reflect COLOR	ARGOS Loc.	Temperature sensor (0.05°C res)	Depth sensor (10m res)	Internal memory	Temp. series profiles (6 points, 5min rate, depth threshold)

Raw data characteristics

ARGOS transmitters

- Transmits **periodic short duration messages** to ARGOS instruments on satellites
- Polar orbiting satellites at an altitude of 850km
- Transmission only possible when the turtle is **close to the surface** and a satellite is **passing overhead** (Max. 14 messages per day)

Raw data characteristics

- Location of the ST is computed during transmissions only
- Based on **Doppler effect** : received frequency differs from the transmitting one, due to the satellite being mobile

Aurélien PRAT (LACy (Météo France) & InriPre-processing of sea turtle biologging obsei

Objectives of STORM-IO - Oceanography

- Elaborate a methodology allowing the assimilation of ST environmental biologging time series in an operational meteorologic and oceanic forecasting system
- **Produce monitorings** to check data quality, compare to model forecasts, verify satellite-derived ocean surface products
- Run several reanalysis experiences for cross-validation

Data Assimilation global overview

The Variational Approach

• Evaluate the **discrepancy** between the model predicted trajectory and the observation data using a **cost function** :

$$J(\mathbf{x}^{\mathbf{o}}) = \underbrace{\frac{1}{2} (\mathbf{x}^{\mathbf{o}} - \mathbf{x}^{\mathbf{b}})^{T} \mathbf{P}^{-1} (\mathbf{x}^{\mathbf{o}} - \mathbf{x}^{\mathbf{b}})}_{J^{b}: \text{ background}} + \underbrace{\frac{1}{2} (H(\mathbf{x}^{\mathbf{o}}) - \mathbf{y})^{T} \mathbf{R}^{-1} (H(\mathbf{x}^{\mathbf{o}}) - \mathbf{y})}_{J^{o}: \text{ obs}}$$

With x^o the initial state, x^b the background, H the observation operator, P the covariance matrix of the background error, R the covariance matrix of the observation error.

• Minimize **J** over all the possible x^{o} to find the optimal state x^{a}

$$\mathbf{x}^{\mathbf{a}} = \min_{\mathbf{x}^{\mathbf{o}}} J(\mathbf{x}^{\mathbf{o}})$$

Need to pre-process ST observation time series

- DA requires to compute an *error covariance matrix* R, that gathers all the "*inter-dependencies*" of the observations → Huge matrix that needs to be inverted !
- Data acquisition frequency rate is very high here (every 5 min) → Large profusion of data, obs cannot be considered as non dependant without pre-processing
- **Two approaches** to reduce the number of information to use as observation data : **data filtering** (pick up a restricted amount of data) or **superobs creation** (average similar data)

Sea turtle observation data pre-processing

Super-obs creation process

- Gather similar environmental data (temperature and depth) within clusters, using a k-means method
- Output the super-obs environmental values and measure errors for each cluster (arithmetic mean), along with the corresponding date
- **3** Assign a location to each super-obs using the R package foieGras
- Convert the resulting dataset into a feedback file (netcdf) to be used as NEMOVar input

Aurélien PRAT (LACy (Météo France) & InriPre-processing of sea turtle biologging obsei Nov 2022

Step 1 : K-means clustering

K-means clustering (Non-supervised clustering method)

Iteration of those steps :

- Assign a cluster to each point, based on the distance to the corresponding cluster node
- 2 Compute new nodes as the mean of each cluster
- Stopping criterion : Minimizes the intra-class inertia → within-cluster variances (squared Euclidian distances)

Aurélien PRAT (LACy (Météo France) & InriPre-processing of sea turtle biologging obsei

11/18

Regarding the super-obs creation

- Parameters : **depth and time only**, as temperature is highly correlated to both of them (turtle trajectory). **Final within-cluster temperature variance** will be used as a verification.
- The final number of clusters should be provided as $input \to {\sf Need}$ to define a criterion to determine this value
- Define the final number of clusters **K** such that the final intra-class inertia :

$$\mathsf{ICI} = \frac{1}{N} \sum_{i=1}^{K} \sum_{x \in S_i} \left(||Z_x - Z_i||^2 + ||t_x - t_i||^2 \right) < \mathsf{ICI}_{\mathsf{max}}$$

With N points dispatched into K clusters, Z_i and t_i being the cluster node depth and time of the S_i cluster.

Step 1 : K-means clustering

Define ICI_{max}

- We chose $|\mathbf{ICI}_{max} = \Delta Z_{max}^2 + \Delta t_{max}^2$
- ΔZ_{max} equals to the size of a **NEMO grid cell** along the Z-axis
- Δt_{max} is determined using the characteristic autodecorrelation time of the depth time series \rightarrow The goal is to end up with non-correlated super-obs.

Figure: Example of an autocorrelation graph for a loggerhead turtle (26000 points), with an autocorrelation coefficient set to 0.4

R package foieGras

- Animal movement is modelled as a continuous-time random walk on velocity v_t in two coordinate axes :
 - $v_t = v_{t-\Delta} + \Sigma_{\Delta}$ where Δ is the time increment and Σ_{Δ} is a zero-mean, bi-variate Gaussian random variable with variance $2D\Delta$
 - $x_i = x_{i-1} + v_i \Delta_i$ where x_i is the true location of the animal at time t_i
 - y_i = x_i + ε_i, ε_i ~ N(0, Ω_i) where y_i the location observed at time t_i, Ω_i the measurement error-covariance matrix with elements being derived from the ARGOS error ellipses components
- Fit the state-space model, using maximum likelihood to estimate model parameter D (*Jonsen et al., 2020* and *Kristensen et al., 2016*)
- Find the **predicted states** corresponding to the super-obs dates using the evaluated model

Obs pre-processing output example

Raw data visualization - Argos PTT : 224015

Figure: Example of obs. pre-processing output : Loggerhead turtle released from South Africa, equipped with *Wildlife Computers* tag. Final reduction factor : 78%

Nov 2022

Ocean model monitoring : first results

Ocean model characteristics

Model	Config	Spatial res.	Z-levels	Time step	RST	OBC	Forcing
NEMO	REUNION12	1/12°	50	360s	PSY4	PSY4	 IFS (9km res.), forcing rate : 3h AROME (2.5km res.), forcing rate : 1h

Monitoring period selection

Superobs environmental data and trajectories within a 83 days-long time window

Ocean model monitoring : first results

Figure: Obs and forecast temp. correlation graphs for a 3 months-long monitoring, starting from a single PSY4 reanalysis. Only *Wildlife Computers* obs. were processed.

17 / 18

Future developments

Monitoring

- Compare AROME forcing, IFS forcing and AROME coupled forecast temp. to the observed ones.
- Run the same monitorings using the LOTEK datasets.

Reanalysis

Run a set of 3 different reanalysis using the NEMOVar (3DFGAT) system : without obs., with conventional obs., with conventional obs.
 + STORM obs.

Conclusion

• The first results reveal a promise of **quantifying the ocean mixed layers** inside **cyclonic eddies**, along with the use of additional obs. in the NEMO reanalysis.